

CHAPTER 21: NUCLEAR CHEMISTRY

Introduction

· DSN5174	> of a nucleue is 1.8×10'tg/cc.
	,
ب	if earth had some mass as it now does, but a
(remove al	density of 1.9 ×10'4 s/cc, the vakins of the earth
ampty spea)	and of the sec , we bear of the sector
	until only be about 200 yourds (wat 4,000 m; los)!
	work our at a boul 200 years (Wit +,000 hists).

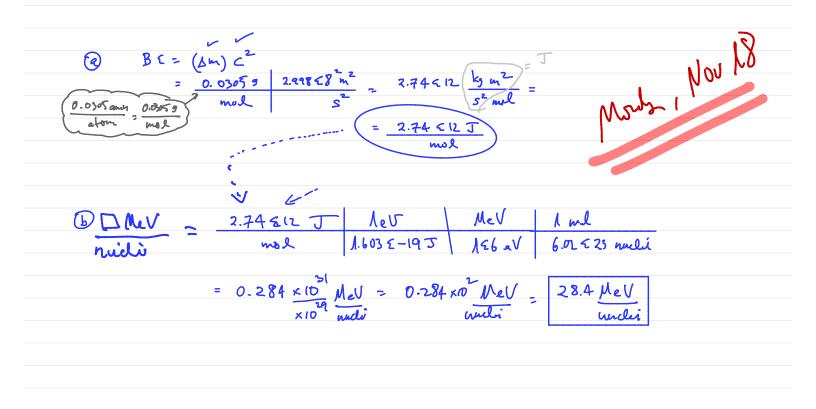
¿What holds atoms together?

- 4 Types of Forces
 - ① electronagnetic
 - 2 gravitational
 - ③ weak nuclear force (binding)
 - ④ strong nuclear force

Nuclear Binding Energy

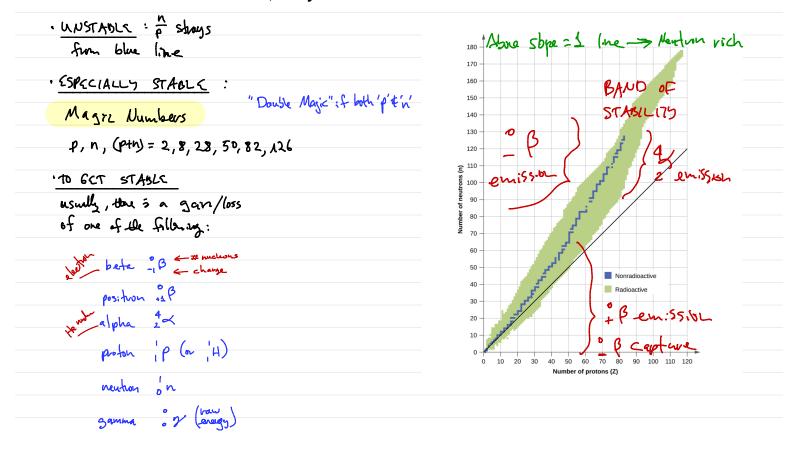
P+n 0 7⁸actual Energy of nucleus must be ; more stable than enough of its parts (given it stage typettion) enny of nucleus $\mathcal{L} = mc^2$ often neveral in eV (nuclear $\Delta E = (Am) c^2$ (let / 1.603×10¹⁹ J) energy BE = (Am) c² MASS defect Mass is converted its energy ... once assembled, the weight of the atom is less than the sum of its pairs !

Whotever it 3, 7 must


be shonger than the

potens

repulsion lee


1.te - changel

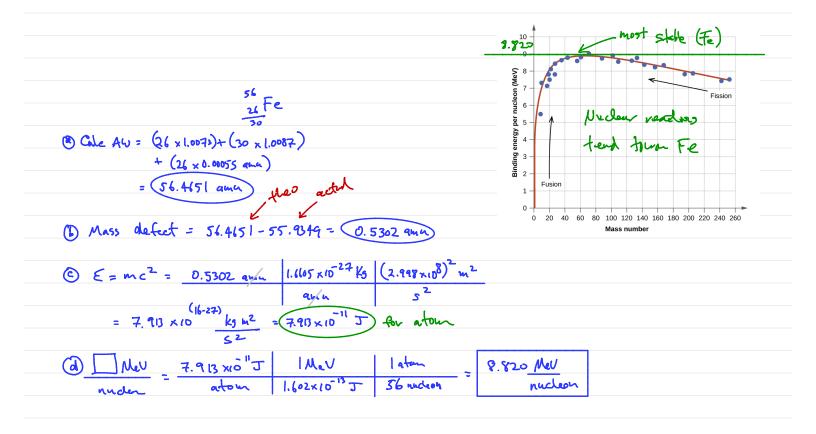
(EX) Calculate Nuclear Binding ¿What is the binding energy, BE, for the nuclide, ${}^{4}_{2}$ He, in Me^I/nucleus, given the Mass Defect is 0.0305 amu. Recall 1 J = 1 Kg•m²/s².

Nuclear Stability (Z/n ratio)

· of the 1000's of muchidus, only ~ 250 are stable

(*)
$$n/p$$
 too large (conv. $n \rightarrow p$)
216 Ra $\longrightarrow_{gq}^{229} Ac + -i\beta$
(*) n/p too Small (conv $p \rightarrow n$)
 $19 K \longrightarrow_{18}^{38} Av + +i\beta$ (priton 103)
 $37 Av + -ie \longrightarrow_{17}^{37} Cl$
 $224 p = 222 p + 4$

.


39 K 40 K	
20 21 Magiz Number of nertroine	
X) Nuclear Reactions Complete the following reactions	both Mas & Charge must even balance
	accoss afrazion
$ \begin{array}{c} 2^{6} M_{g} + \square \rightarrow 2^{6} M_{f} + \frac{1}{6} n \\ \hline 2^{6} M_{g} + \frac{1}{6} P \rightarrow \frac{2^{6}}{13} M_{f} + \frac{1}{6} n \end{array} $	
	accoss aqua lion

(EX) Binding Energy	per Nucleon
¿What is the BE for	₄₂He?

Carlier, ne calculated BC = 28.4 MeV/nuclei : <u>Mev</u> = <u>28.4 Mev</u> <u>Anucleus</u> = <u>7.10 Mev</u>/nuclean nuclean nuclei <u>4 nucleans</u>

(EX) Calculate Binding Energy

¿What is the binding energy per nucleon, in MeV, for ⁵⁶₂₆Fe, given it has an atomic mass of 55.9349 amu?

Nuclear Equations [21.2]

Examples

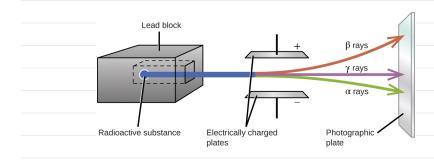
Madam Curie first to isolate unstable element, polonium 212 84 $-\rightarrow \frac{285}{82}$ fb $+\frac{4}{2}$ Hc	(anipiee	
James Chadwick discovered the neutron $\begin{array}{c} q\\ 4 \end{array} Be + \frac{4}{2} He \rightarrow \frac{n}{2} C + \frac{1}{2} n$ Ernst Rutherford was the first to prepare radioisotope by artificial means $\begin{array}{c} (4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 8 \end{array} + \frac{4}{2} A \rightarrow \frac{17}{8} D + \frac{1}{1} H$ First controlled chain nuclear $\begin{array}{c} 235'\\ $		
James Chadwick discovered the neutron $\begin{array}{c} q\\ 4 \end{array} Be + \frac{4}{2} He \rightarrow \frac{n}{2} C + \frac{1}{2} n$ Ernst Rutherford was the first to prepare radioisotope by artificial means $\begin{array}{c} (4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 8 \end{array} + \frac{4}{2} A \rightarrow \frac{17}{8} D + \frac{1}{1} H$ First controlled chain nuclear $\begin{array}{c} 235'\\ $	Madam Curie first to isolate	$2120 - 208p/ 4_{11}$
the neutron $4 ba + \frac{1}{2} ba \rightarrow \frac{1}{2} ba \rightarrow$	unstable element, polonium	84 ¹⁰ 32 ¹⁵ t 2 ¹⁶
the neutron $4 ba + \frac{1}{2} bb = \frac{1}{2} c + \frac{1}{2} bb$ Ernst Rutherford was the first to prepare radioisotope by artificial means $14 \\ 7N + \frac{4}{2} c \rightarrow \frac{17}{8} 0 + \frac{1}{4} bb$ First controlled chain nuclear $235 \\ 235 \\$		
Ernst Rutherford was the first to prepare radioisotope by artificial means First controlled chain nuclear $235^{\circ} U + \frac{1}{2}N \rightarrow \frac{87}{8}D + \frac{141}{4}L_{4} + 3\frac{1}{6}N$	James Chadwick discovered	
to prepare radioisotope by artificial means First controlled chain nuclear $14 \\ 7N + \frac{4}{2} \\ 3 \\ 4 \\ 1n \rightarrow 87 \\ 87 \\ 1n + 10 \\ 87 \\ 1n + 10 \\ 1n \rightarrow 87 \\ 1n + 10 $	the neutron	4 pet 2 te - (ton
First controlled chain nuclear $235 \qquad \qquad$	to prepare radioisotope by	$\frac{14}{7}N + \frac{4}{2} \propto -\frac{17}{8}O + \frac{1}{1}H$
First controlled chain nuclear 235 $U + 1n \rightarrow 87$ br + $14(1a + 3) n$		
92 0 2 5 5 5	First controlled chain nuclear	$235 \qquad \qquad$
reactin started with	reactin started with	92 0 35 57

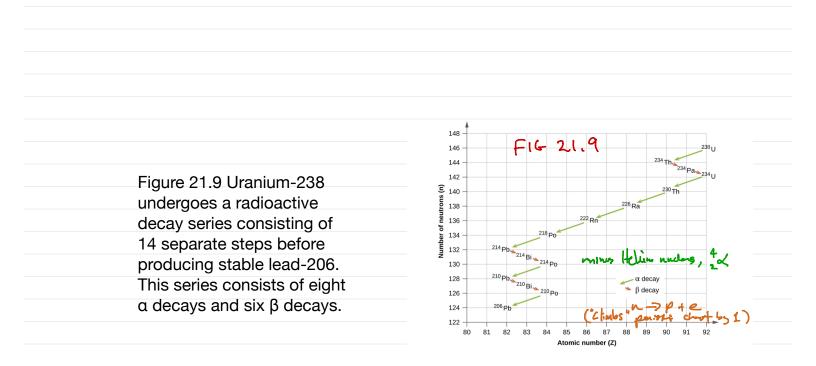
Key Terms

RADIOACTIVE DECAY - change of unstable nuclide to another

PARENT NUCLIDE – unstable nuclide

DAUGHTER NUCLIDE - resulting nuclide

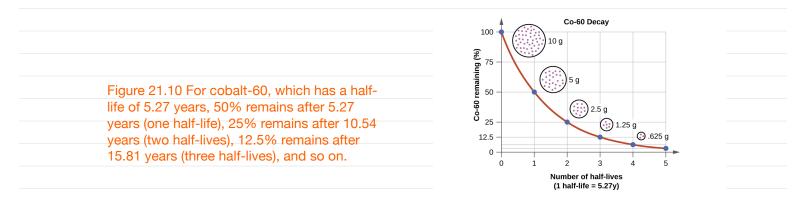



Figure 21.6 Alpha particles, which are attracted to the negative plate and deflected by a relatively small amount, must be positively charged and relatively massive. Beta particles, which are attracted to the positive plate and deflected a relatively large amount, must be negatively charged and relatively light. Gamma rays, which are unaffected by the electric field, must be uncharged.

Types of Radioactive Decay

$\alpha_{1}, \Gamma(\alpha_{1}) \to 0$	Туре	Nuclear equation	Representation		Change in mass/atomic numbers
ALPHA DECAY gives of $\frac{4}{2} \ll \left(\frac{4}{2} + e^{24}\right)$	Alpha decay	AX 4He + A-4Y		> 💦	A: decrease by 4
\downarrow typical for large (A > 200, Z > 83)		2		- 1	Z: decrease by 2
→ daughter will have larger n/p ratio than parent	Beta decay	$^{A}_{Z}X$ $^{0}_{-1}e + ^{A}_{Z+1}Y$		*	A: unchanged Z: increase by 1
GAMMA EMISSION – quantum of high-every EMR	Gamma decay	${}^{A}_{Z}X = {}^{0}_{0}\gamma + {}^{A}_{Z}Y$	ν ννγ	*	A: unchanged Z: unchanged
\hookrightarrow occurs when a daughter nuclide is formed in an			Excited nuclear state		
excited ground state	Positron emission	$^{A}_{Z}X$ $^{0}_{+1}e$ + $^{A}_{Y-1}Y$			A: unchanged Z: decrease by 1
ع: ^ی رد – ⁽	Electron	$^{A}_{Z}X = ^{0}_{-1}e + ^{A}_{Y-1}Y$		>	A: unchanged Z: decrease by 1
			X-ray VVVS		
\rightarrow essentially, neutron $->$ proton + electron					
ightarrow daughter will have smaller n/p ratio than parent					
POSITRON EMISSION omission of a "positive" electron			180 - Abue Sbys	=1 (ne-	Hardin vich
FOSTINON ENISSION - emission of a positive election	+ ¹⁵ N	(or +1 (?)	160		
\sim convert element to next lower on PC: e.g. $\sim 0^{-3}$	4		150 -	DANU	OF
POSITRON EMISSION — emission of a "positive" electron → convert element fo next lower on PC; e.g	7	(** +1 × /	150	STAG	0F
\rightarrow convert element fo next lower on PC; e.g $\circ \rightarrow \circ \circ$ $\rightarrow \circ \circ$	7	(°° +1 ×)	150 140 130 120 § 110	STAGU	0F L(75 45/
	7	(⁶⁴ +1 ¢)	130 140 120 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STABL	0F (17) 4 2 2 2 m 35 mm
	7 7	(°* +1 ×)	8 110 - F	STASU STASU	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	7 10	(^{or} +1 < /	© 110 - F	STAGE	ст - 175 - 2 2 2 5 мл
→ occurs in low n/p parents [n/p_daughter > n/p_parent] ELECTRON CAPTURE			© 110 - F	and a second sec	Southe
→ occurs in low n/p parents [n/p_daughter > n/p_parent]	eta-deca	ay)	© 110 - F	and a second sec	105 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Radioactive Decay Series

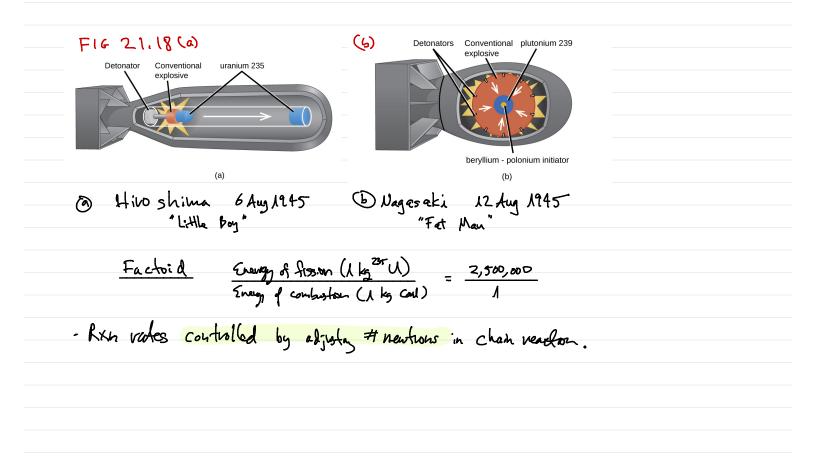

For heavier elements, there are three main decay series, allof which terminate at a stable isotope of lead, Pb-82.

Radioactive Half-Lives

Follows 1st order kinetics

$$\begin{array}{rcl} rate &=& k[A] \\ lnA &=& -kat + lnA_o & & & & \\ lnN_t &=& -\lambda t + lnN_o & & & & \\ ln\frac{N_o}{N} &=& \lambda t & & \\ ln2 &=& \lambda t_{1/2} & (at t_{1/2}, \frac{N_o}{N} = \frac{2}{1}) \\ t_{1/2} &=& \frac{0.693}{\lambda} & \\ \end{array}$$

(EX) Calculate Time to Decay [21.6 check] ¿Radon-222 has a half-life of 3.823 days. How long will it take 0.750 g of 86Ra-222 to decay to the point that only 0.100 g remains?


Ridon-222 has a half life of 3.823 days. How will it take 1989. J 22 Ra to deay + the why 2.100 g (remains ? <u>Analyss</u>: 3-possible aquitions: (a) $t_{1/2} = \frac{0.683}{\lambda}$ $V_{\pm} = N_0 e^{-\lambda t}$ (c) $l_{\mu} \left(\frac{N_0}{N}\right) = \lambda t$ Stutegy @, then @ $(\mu) \quad \mu\left(\frac{\mu}{\nu}\right) = \chi \quad e \Rightarrow \quad t = \ln\left(\frac{\mu}{\nu}\right) \times \frac{1}{\lambda} = \ln\left(\frac{\vartheta.750}{\vartheta.100}\right) \times$ $= 2.0[\times 1 day = 0.01]$

(EX) Calculate of an item ('rate proportional to N' assumption) [21.6b] ¿Samples of seeds and plant matter from King Tutankhamun's tomb have a C-14 decay rate of 9.07 disintegrations/min/g of C. How long ago did King Tut's reign come to an end?

SXTRACT : No & Role = 9.07 disidequities of him No L Rote = 13.6 disintegritors of / min (std. info) dyz = 5730 yr (std. info) · Knor/Can Cale all information No C Role * header to use pro $t = -\frac{1}{\lambda} l_{m} \left(\frac{\mu_{r}}{\mu_{o}} \right) \stackrel{\text{def}}{=} \frac{\lambda}{l} = \frac{0.693}{5730 \text{ y}}$ V $\frac{1}{3350} + \frac{57205}{0.695} = \frac{1}{3.6} = -\frac{1}{3270} + \frac{1}{3250} = \frac{1}{3350} + \frac{1}{3350} = \frac{1}{3350} + \frac{1}{3350}$ 6. 9d. Nov 20th So, King Tut's veign ended don't +2017 - 3350 -1333 + 2 (there is no you zero) -18C->+1AD - 1335 1340 BC

Nuclear Fission

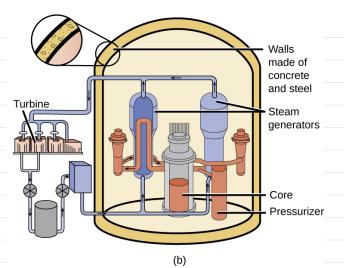
FISSION – decomposition of unstable, large nuclie	F(G. 21.16
CHAIN REACTION – decompositon of fewer nuclei provide enough mass and energy to cause greater number of nuclei to decompose	(a) ^(a) ^(b) ^(b) ^(c)
FISSILE (or FISSIONALBE) – material that can sustain a nuclear fission chain reaction	bn 220 bn 200 bn
CRITICAL MASS – amount of material needed to sustain chain reaction	$^{2}\overset{1}{\underbrace{\otimes}} U + \overset{n}{\underbrace{\circ}} n \longrightarrow \overset{1}{\underbrace{\otimes}} Ba + \overset{m}{\underbrace{\otimes}} Kr + 3 \overset{h}{\underbrace{\circ}} n$ (c) $^{2}\overset{2}{\underbrace{\otimes}} U + \overset{n}{\underbrace{\circ}} n \longrightarrow \overset{m}{\underbrace{\otimes}} Rb + \overset{1}{\underbrace{\circ}} Cs + 3 \overset{h}{\underbrace{\circ}} n$ (a) $^{2}\overset{2}{\underbrace{\otimes}} U + \overset{n}{\underbrace{\circ}} n \longrightarrow \overset{m}{\underbrace{\otimes}} Rb + \overset{1}{\underbrace{\circ}} Cs + 3 \overset{h}{\underbrace{\circ}} n$
SUBCRITICAL MASS – amount of material that can NOT sustain chain reaction	(b) $2\frac{6}{25}U + \frac{6}{10}n \longrightarrow \frac{6}{35}Br + \frac{144}{145}Ka + 2\frac{1}{5}n$ (c) $2\frac{6}{25}U + \frac{6}{10}n \longrightarrow \frac{6}{35}Br + \frac{144}{145}Ka + 3\frac{1}{5}n$
SUPERCRITICAL MASS – amount of material that causes an increase in the rate of fission	

LICC	inn	レへつ	otoro
E133		nea	ctors

NUCLEAR FUEL	
→ fissionalbe isotope	
ightarrow U-235 (U-238 not fissionable)	

MODERATOR

→ slows neutrons to a speed low enough to cause fission → ex: graphite, heavy water (D2O, ^2H20)


COOLANT

 \hookrightarrow carried heat to boiler

 \rightarrow ex: water, molten salt, lead

CONTROL RODS

- └→ controls reaction by adjusting # slow neutrons
- → material = boron, cadmium

F16 21.19

5 B + in -> 7 hi + 4 He